Skip to main content

Full text of "Medical Jurisprudence And Toxicology"

See other formats

BLOOD  STAINS                                                          105

followed by a drop of tannic acid solution produces a blue or bluish-purple
colouration, if it is due to oxide of iron.

Synthetic Dye Stains.—These stains often resemble old blood stains, but
they may be easily recognized by treating them with strong acids and alka-
lies. Nitric acid, for example, changes them to a yellow colour and a strong
solution of an alkali may restore the red colour'in most cases. No such re-
action takes place in the case of blood stains.

Mineral Stains.—These are mostly due to red paints containing oxides
of iron. After dissolving with hydrochloric acid, the solution may be tested
for iron. In certain circumstances, stains of red paint, consisting of red lead
or red sulphide of mercury (vermilion) are found in the garments of Hindu
women or in Hindu temples. They can be easily identified by the applica-
tion of chemical tests for lead and mercury.

Stains of Vegetable Origin.—Stains resembling blood may be produced
on clothing from certain fruits, such as, mulberry, currants, mangosteens,
gooseberries and jambans (Eugenia jarnbolana). They are changed to a
greenish-yellow colour on the addition of ammonia and are bleached by
chlorine water, which has practically no effect on blood. Knives which are
used to cut acid fruits not unfrequently present stains having a strong
resemblance to blood stains. These stains are due to the formation of citrate
and malate of iron, are soluble in water, and give rise to Prussian blue, if
a drop of hydrochloric acid and potassium ferrocyanide solution be added.
They do not show red blood corpuscles under a microscope, but present vege-
table cells and detritus.

Reddish stains are also produced by henna, catechu, pan juice (with lime
and catechu), tobacco, and by the barks, leaves and fruits of some trees,
such as babool (Acacia Arabica) and gab (wild mangosteen or Diospyros
Embryopteris). Most of them grow all over India and contain tannin, which
will blacken the stain if a drop of ferric chloride solution is added to it. The
addition of ammonia will change the colour to green, red or bluish-black,
and dilute mineral acids will heighten the original colour, while chlorine
water will bleach it. An acid decolourises a stain caused by pan juice, while
an alkali restores its colour. The spectroscope does not show any absorption

Certain red colouring matter, such as cochineal, lac dye, alkanet root,
madder red, muujeet (Sanskrit—Manjistha) and petals of red hibiscus, give
spectra which may be mistaken for those of blood, but the positions of the
absorption bands in these spectra are not identical with those of haemoglobin
and its derivatives nor are they affected by reducing and other reagents in
the same way as haemoglobin changes to oxyhsemoglobin, haemochromogen,
etc. Moreover, these colouring matters do not give the benzidine reaction in
the preliminary chemical tests, and their solutions, when treated with alum,
boric acid, dilute ammonia, sulphur dioxide solution or chlorine water, show
well-marked alterations in the tone and depth of their colour, as also in the
position of their absorption bands. Such changes never occur if the colour-
ing matter is blood.

Other Stains.—Spots of grease, resin, tar and pitch, especially on dark
fabrics, may resemble very old blood stains, but their solubility in alcohol,
ether, chloroform, turpentine or xylol differentiates them from blood stains.
When a clean white filter paper is pressed on any of these spots with a hot
iron the paper absorbs the material and is stained.

Reddish-brown faecal stains sometimes simulate old blood stains. Even
the benzidine test may show a positive reaction owing to the presence ^of
undigested fish or meat fibres. An examination under a microscope will,
however, reveal the undigested food particles and decide the question.